

Over 2,400 studies on LC-HRMS in the last 20 years;

• Almost 50% of them on Orbitrap.

Metabolites

Main topic

clinic and forensic toxicology

food safety and control

Automated peak detection by exact mass filtering

Non-targe ed ions list

Generation of **elemental formulae** fit by isotopic
pattern distribution

Molecular structure search in databases

Matching of measured **RT**with predicted **RT** (theoretical logK_{our}) of latabase hits

Matching of measured MS/MS fragmentation with that predicted for database hits

List of likely present unknowns

- Absence of any a priori information about analytes;
- Detection criteria (e.g. product scan or NL);
- Mass accuracy: < 5 ppm;
- Relative isotopic ratio accuracy: < 5%;

- Reduced number of recorded experimental spectra;
- Limited comparability of different source ionization;
- Ion suppression can affect mass accuracy and number of unknows;
- Risk of false negatives (e.g. loss during sample preparation).

List of likely present suspects

- Absence of reference standards, but specific information available;
- Exact mass from molecular formula of analytes of interest;
- Mass accuracy: < 5 ppm;
- Relative isotopic ratio accuracy: < 5%;

- Reduced number of recorded experimental spectra;
- Limited comparability of different source ionization;
- Ion suppression can affect mass accuracy and number of suspects;
- Risk of false negatives.

- Identification and quantification through reference standards;
- No limits in the number of targeted compounds to be identified in the same analytical run;
- No risks of false negative thanks to method validation with

reference standards;

- Mass accuracy: < 5 ppm;
- Relative isotopic ratio accuracy: < 5%;

Z =

Non-targeted screening analysis

Glycosides

Sugar esters

Glycosylation:

- Increases compound water solubility;
- Protects hydroxyl/phenolic groups from oxidation;
- Decreases toxicity of phitotoxins;
- Facilitates compound membrane transports;

. ...

Neutral Loss experiment

Chromatographic separation

- ✓ Accucore[™] Polar Premium LC C18
- √ Flow rate: 0.300 ml/min;
- ✓ Run time: 55 min.

Mass analysis

Full MS/AIF/NL dd-MS²

- Full MS resolving power: 140,000 FWHM;
- AIF and dd- MS/MS resolving power: 17,500 FWHM;

 $(\Delta m/z = 10 ppm)$

- m/z 132.04225
- √ m/z 146.05790
- m/z 162.05282
- m/z 264.08451
- m/z 294.09508
- m/z 324.10564

Neutral Loss experiment: tentative identification

282 glycosylated compounds detected:

Suspect & targeted screening analysis

Free low-molecular weight phenolic compounds (N=56)

Barnaba C. et al., 2° MS-Wine Day 2017

Compounds	[M – H] ⁻	RT	NCE	MS/MS fragments	LOQ	Compounds	[M H] ⁻ (m/z)	RT (min) NCE		MS/MS fragments	LOQ
<u>'</u>	(m/z)	(min)			(µg mL ⁻¹)	<u> </u>	'	. ,	INCL	9	(µg mL ⁻¹)
gallic acid	169.0142	5.60	45	125.0244	0.0001	acetovanillone+isoacetovanillone	165.0557	10.69	40	150.0321, 122.0371	0.0001
protocatechuic acid	153.0193	5.76	50	109.0294	0.0001	isopropiosiringone	209.0819	10.81	35	194.0581, 179.0348	0.0011
p-carboxyphenol acid	137.0244	6.14	40	93.0646	0.0001	acetosyringone	195.0662	11.00	30	180.0426, 165.0190	0.0001
gentisic acid	153.0193	6.21	45	109.0295, 108.0217	0.0001	isoacetosiringone	195,0662	11.24	30	180.0426, 165.0190	0.0011
hydroxytyrosol	153.0557	6.28	50	123.0437, 95.0487	0.0005	syringol	153.0557	11.32	50	138.0321, 123.0087	0.0129
vanillic acid	167.0350	6.42	40	152.0114, 123.0452	0.0001	coniferylaldehyde	177.0556	11.51	35	162.0320	0.0001
syringic acid	197.0455	6.57	35	182.0216, 166.9984	0.0001	sinapinaldehyde	207.0663	11.64	35	192.0427, 177.0193	0.0010
caffeic acid	179.0350	6.60	40	135.0452	0.0001	tryptophol	160.0767	11.87	70	142.0659, 130.0660	0.1102
homovanillic acid	181.0506	6.79	45	137.0617, 122.0373	0.0010	o-vanillina	151.0401	12.09	40	136.0152, 123.0083	0.0010
tyrosol	137.0608	6.79	40	119.0502, 106.0426	0.0001	methyl vanillate	181.0506	12.13	40	166.0268, 151.0036	0.0005
protocatechuic aldehyde	137.0244	7.10	60	108.0216, 93.0344	0.0001	(m+p)-cresol	107.0502	12.27	60	79.0551, 65.7207	0.1010
pirocatecolo	109.0295	7.28	80	108.0202, 91.0176	0.0005	4-ethylcatechol	137.0608	12.30	35	122.0374	0.0005
<i>p</i> -coumaric acid	163.0401	7.37	35	119.0502, 93.1266	0.0001	o-cresol	107.0502	12.41	60	82.5568	0.1170
salicylic acid	137.0244	7.72	60	93.0346, 122.0374	0.0001	vanillyl ethyl ether	181.0870	12.67	30	166.0633, 153.0656	0.0010
phenol	93.0345	7.73	100	65.0382	0.1050	guaiacol	123.0451	12.85	70	108.0215, 105.0346	0.0110
catechin	289.0717	7.89	35	245.0805, 221.0812	0.0051	4-methylsyringol	167.0713	12.87	20	152.0478, 137.0243	0.0101
ferulic acid	193.0506	8.17	40	178.0268, 149.0608	0.0001	4-vinylphenol	119.0502	13.60	100	91.0550, 93.0346	0.0112
aesculetin	177.0193	8.48	50	133.0296, 105.0345	0.0001	ethyl vanillate	195.0662	13.69	40	180.0415, 130.9911	0.0006
sinapinic acid	223.0611	8.54	30	208.0373, 179.0714	0.0005	3.4-xylenol	121.0658	13.73	90	119.0503, 96.9445	0.0100
homovanillic alcohol	167.0714	8.78	35	152.0477, 122.0375	0.0051	4-vinylguaiacol	149.0608	14.00	20	134.0375, 87.0088	0.0055
epicatechin	289.0718	9.67	40	245.0805, 221.0812	0.0001	ellagic acid	300.9989	14.00	60	229.0149, 185.0071	3.03
vanillin	151.0401	9.86	40	136.0152, 108.0202	0.0001	4-ethylphenol	121.0658	14.22	90	106.0423, 83.9854	0.1022
coniferyl alcohol	179.0714	10.11	35	164.0478, 121.0296	0.0107	4-methylguaiacol	137.0608	14.37	35	122.0374	0.0105
4-methylcatechol	123.0451	10.18	100	108.0214, 90.0591	0.0005	4-ethylguaiacol	151.0764	14.58	10	136.0529, 121.0293	0.0009
syringaldehyde	181.0506	-	40	166.0269, 151.0035	0.0008	4-allyl syringol	193.0870	14.85	10	178.0632, 163.0399	0.0202
isopropiovanillone	179.0714	10.55	40	164.0477, 121.0295	0.0054	eugenol	163.0764	15.11	30	148.0529	0.0087
scopoletin	191.0350	10.66	40	176.0112, 148.0166	0.0010	isoeugenol	163.0764	15.47	30	148.0529, 118.9925	0.0102

Glycosylated low-molecular weight phenolic compounds (N=7)

Barnaba et al., J. Chromatography A (2015), 1423, 124-135.

Compounds	$[M-H]^{-}$	RT	NCE	MS/MS	LOQ	
Compounds	(m/z)	(min)	INCL	fragments	(μg mL ⁻¹)	
acetovanillone-glu ^(h)	327.1085	8.40	20	165.0557; 150.0321	0.2800	
aesculetin-glu ^(b)	339.0722	6.8	35	177.01933; 133.0296	0.1100	
orcinol-glu ^(f)	285.0980	6.83	40	123.0452; 108.0214	0.0500	
p -hydroxybenzaldehyde-all (f)	283.0823	6.08	100	121.0295; 108.0218	0.1000	
salicylic acid-glu ^(f)	299.0772	5.84	20	137.0244; 93.0344	0.0100	
scopoletin-glucoside (h)	353.0878	8.60	20	191.03498; 176.0112	0.1800	
vanillic acid-glucoside (h)	329.0878	5.42	20	167.03498; 152.0114	0.2100	

Suspect & targeted screening analysis: grapes

Hybrid grape varieties

Cabernet Cantor

Prior

Solaris

Muscaris

Vitis vinifera grape varieties

Merlot

Chardonnay

Suspect & targeted screening analysis: wines

- ✓ Primitivo di Manduria (DOP);
- ✓ Negroamaro (IGP).

Barnaba et al., Food Chem (2016), 206, 260-266.

Targeted screening analysis: oak-aged wines

810-821.

Suspect screening analysis: tannins

Suspect screening analysis: tannins

169 glycosylated low-molecular weight phenolic compounds tentatively identified:

